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Abstract
We demonstrate that Pascal’s classical theorem for hexagons inscribed in
conics allows one to define in a compact manner maps which are governed
algebraically by the integrable discrete CKP equation. A theorem for conics on
oriented triangulated surfaces is used to construct a well-posed Cauchy problem
for these dCKP maps. Moreover, the same theorem is exploited to construct in
a purely geometric manner a Bäcklund transformation for dCKP maps. Thus,
the integrability of dCKP maps and their underlying nonlinear soliton equation
is shown to be encoded in an incidence theorem of projective geometry.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

Integrable systems which exhibit the remarkable interaction properties of solitons are
ubiquitous in mathematics and arise in such diverse areas as hydrodynamics, plasma and
solid state physics as well as in general relativity [6, 12, 24]. The importance of solitons in
current technological applications such as optical fibre communication systems and Josephson
junction superconducting devices has been well documented [10, 13]. The (A)KP, BKP and
CKP hierarchies and their multi-component analogues may be regarded as the fundamental
hierarchies of integrable systems. Each scalar hierarchy may be recovered via sophisticated
continuum limits from a single integrable discrete ‘master’ equation, namely, the dKP (Hirota)
equation [11], the dBKP (Miwa) equation [16] and the dCKP equation, respectively [7].

It has recently come to light that there exist profound connections between fundamental
incidence theorems of projective and conformal geometry and discrete integrable systems.
For instance, Miquel’s circle theorem has been shown to be central to the construction of
both a well-posed Cauchy problem and a Bäcklund transformation for the discrete analogue
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of classical orthogonal coordinate systems in a three-dimensional Euclidean space (see [2]
and references therein). The latter are governed by the Lamé system set down in 1840
which appears to be the oldest soliton system to be found in classical differential geometry
[20]. Accordingly, it may be said that Miquel’s theorem encapsulates the integrability of the
discrete Lamé system underlying discrete orthogonal coordinate systems.

In [14], it has been demonstrated that Clifford’s classical C4 point-circle configuration
appropriately interpreted and extended to a lattice of fcc combinatorics encodes via Menelaus’
theorem nothing but the Schwarzian version of the dKP equation. Similarly, Maxwell’s theory
of reciprocal figures developed in the context of graphical statics has been utilized to retrieve
the Schwarzian BKP equation [15]. Furthermore, in [22], a generalization of Menelaus’
theorem and Carnot’s classical theorem have been shown to encode a Möbius invariant avatar
of the dCKP equation.

In the present paper, we investigate in detail the projective geometry associated with the
dCKP equation. Thus, we first recall the definition of discrete CKP maps as set down in
[22] and demonstrate the fact that the constraints defining dCKP maps reduce to a single
condition is a consequence of Pascal’s classical theorem for hexagons inscribed in conics
[18]. This complements the argument given in [22] which converted this geometric condition
into an algebraic multi-ratio condition via Carnot’s theorem. We then formulate a Cauchy
problem for dCKP maps and prove its well posedness by employing an incidence theorem for
conics on closed and oriented triangulated surfaces. This incidence theorem has been used
in a different context to prove a ‘non-Steinitz’ theorem [19] and can be seen as a corollary
of Carnot’s theorem. Application of the incidence theorem also leads to the construction of
a Bäcklund transformation which may be used to generate large classes of dCKP maps
of arbitrary complexity. This illustrates in a purely geometric manner the integrable nature of
the master dCKP equation.

2. The geometry of dCKP maps

In this section, we briefly review the geometric and algebraic properties of so-called discrete
CKP (dCKP) maps as recorded in [22]. However, for convenience, we choose to adopt an
equivalent geometric definition of dCKP maps which differs slightly from that presented in
[22]. Thus, we are concerned with the geometry of ‘lattices’ in R

3 indexed by the set of edges
E of a cubic lattice Z

3, that is, maps

v : E → R
3. (2.1)

For notational convenience, we identify the edges of the cubic lattice with their centres
ei , i = 1, 2, 3, and use the natural labelling

e1(n) = (
1
2 , 0, 0

)
+ n, e2(n) = (

0, 1
2 , 0

)
+ n, e3(n) = (

0, 0, 1
2

)
+ n, (2.2)

where n ∈ Z
3. Any map v may therefore be regarded as a set of three maps vi defined by

vi : Z
3 → R

3, vi (n) = v(ei (n)). (2.3)

2.1. Geometric description of dCKP maps

Particular maps v are obtained by imposing the following simple geometric condition.

Definition 1. A map v : E → R
3 is termed a discrete Darboux map if it obeys the collinearity

condition, that is, if the four images of the edges of any face of the cubic lattice are collinear.
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Figure 1. The geometry of a discrete Darboux map.

Figure 2. The geometry of a discrete CKP map.

By construction, a discrete Darboux map may be thought of as mapping the faces of the
cubic lattice to lines in R

3. It is evident that the six lines associated with the six faces of
any elementary cube are coplanar and hence we may regard any elementary cube as being
mapped to a plane in R

3. The 12 edges of an elementary cube correspond to the 12 points of
intersection of the associated six lines, excluding the points of intersection of the three pairs of
‘opposite’ lines. The latter correspond to the three pairs of ‘opposite’ faces of the elementary
cube. The geometry of a discrete Darboux map is illustrated in figure 1. Here and in the
following, subscripts denote unit increments of the discrete variables nk so that, for instance,

g = g(n1, n2, n3), g1 = g(n1 + 1, n2, n3), g23 = g(n1, n2 + 1, n3 + 1). (2.4)

In order to proceed, we now consider a vertex of an elementary cube and its ‘opposite’
counterpart as indicated by white vertices in figure 2. There exist six edges of the cube which
are not connected to these two vertices. If the six images of these edges (black vertices in
figure 2) lie on a conic or, equivalently, if the hexagon formed by the line segments connecting
the six images is inscribed in a conic then we say that the corresponding conic condition is
satisfied. Since the vertices of an elementary cube consist of four pairs of opposite vertices,
there exist four conic conditions on any elementary cube. In [22], it has been established in an
algebraic manner that if one conic condition on an elementary cube is satisfied then the three
remaining conic conditions automatically hold. In fact, this assertion may readily be verified
by employing the classical theorem of Pascal [18] which states that a hexagon is inscribed in
a conic if and only if the three points of intersection of opposite edges (or their extensions)
are collinear (cf figure 3). In the current context, this implies that if one conic condition on
an elementary cube is satisfied then the points of intersection of the three pairs of opposite
lines, which constitute the extended edges of the hexagon inscribed in the conic (cf figure 2),
are collinear. The latter guarantees, in turn, that the other three hexagons generated by the six
lines must also be inscribed in conics. Accordingly, it is admissible to refer to the four conic
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Figure 3. Pascal’s theorem.

conditions as one conic condition defined on the cube. This forms the basis of the following
definition.

Definition 2. A discrete Darboux map v : E → R
3 is termed a discrete CKP map if the conic

condition is satisfied on all elementary cubes of the cubic lattice.

2.2. Algebraic description of dCKP maps

By definition, if a map v constitutes a discrete Darboux map then there exist six scalar functions
ρik, i �= k ∈ {1, 2, 3}, corresponding to the collinearity conditions

�kv
i = ρik

(
vk

i − vi
k

)
, (2.5)

where the difference operators �k are defined by �kg = gk − g. Figure 1 illustrates the
geometric content of the subset of equations (2.5) which prevails on a single elementary cube.

Conversely, the compatibility conditions �l�kv
i = �k�lv

i associated with the linear
lattice equations (2.5) produce the relations

ρik
l = (

1 + ρki
l

) (1 + ρkl)(1 + ρli)ρik + (1 + ρki)ρlkρil

(1 + ρki)(1 + ρil + ρli)
, (2.6)

where i �= k �= l �= i. These may be solved for the quantities ρik
l and therefore constitute a

well-determined system for the functions ρik . Accordingly, any set of functions ρik obeying
the above nonlinear system gives rise to a multiplicity of discrete Darboux maps v. As shown
in [22], this system is but another avatar of the well-known integrable discrete Darboux system
which governs conjugate lattices in Euclidean space [4, 8]. However, it is emphasized that the
connection between conjugate lattices and discrete Darboux maps as defined in the present
paper occurs at the nonlinear level. In fact, at the linear (geometric) level and in the sense
of soliton theory, discrete Darboux maps may be regarded as ‘adjoint’ to the maps defining
conjugate lattices.

An alternative formulation of the nonlinear system (2.6) is obtained by introducing a
scalar map v : E → R obeying the scalar version of the linear system (2.5). The latter may
be used to parametrize the functions ρik according to

ρik = �kv
i

vk
i − vi

k

. (2.7)

Insertion into (2.6) then produces six equations of which three are independent. These may
be written as, for instance,

M
(
vl

ik, v
i
k, v

l
k, v

k, vl, vi, vl
i , v

k
i

) = 1, (2.8)

where the multi-ratio of 2n numbers is defined by

M2n = M(a1, . . . , a2n) = (a1 − a2)(a3 − a4) · · · (a2n−1 − a2n)

(a2 − a3)(a4 − a5) · · · (a2n − a1)
. (2.9)
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Figure 4. An octagon associated with the M8 multi-ratio condition.
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Figure 5. An oriented Carnot figure.

It has been shown in [22] that the origin of these multi-ratio equations resides in a generalization
of Menelaus’ classical theorem [18, 25]. Each of the six multi-ratio conditions may be
associated with one of the six faces of an elementary cube. Indeed, consider the four edges
(e2, e4, e6, e8) of a face as indicated in figure 4 and the four edges (e1, e3, e5, e7) which are
linked to that face. Then, one may regard the edge centres as the vertices of an octagon
(e1, . . . , e8) and define an associated multi-ratio condition by

M(v(e1), . . . , v(e8)) = 1. (2.10)

Comparison with figure 1 shows that the multi-ratio conditions (2.8) are precisely of the
form (2.10).

The additional conic condition defining discrete CKP (dCKP) maps may be expressed in
algebraic terms by means of a classical theorem due to Carnot [5], the content of which is the
following. Consider an oriented triangle (P 1, P 2, P 3) with two points Qn1,Qn2 on each of
the (extended) edges (P n, P n+1) as shown in figure 5 and define an associated product C6 of
ratios of directed lengths according to

C6 =
2∏

m=1

3∏

n=1

P nQnm

QnmP n+1
(2.11)

with the natural identification P 4 = P 1. Then, the six points Qnm lie on a conic if and only if

C6 = 1. (2.12)

Even though the orientation of the triangle is irrelevant in the context of Carnot’s theorem,
it will prove useful in connection with the determination of both a Cauchy problem and a
Bäcklund transformation for dCKP lattices v(E).

Carnot’s theorem may now be exploited by focusing on one of the four equivalent conic
conditions defined on each elementary cube. Thus, we may consider the points v1,v2,v3 as
the vertices of an oriented triangle with the points v2

1,v
1
2,v

3
2,v

2
3,v

1
3,v

3
1 lying on the respective
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Figure 6. The construction of Cauchy data: v is prescribed on the coordinate axes.

(extended) edges (cf figures 1 and 2). In terms of the coefficients ρik , the condition C6 = 1
then becomes

ρ12(1 + ρ12)ρ23(1 + ρ23)ρ31(1 + ρ31)

ρ21(1 + ρ21)ρ32(1 + ρ32)ρ13(1 + ρ13)
= 1 (2.13)

which, on use of (2.7), translates into a constraint on the scalar map v, namely,

M
(
v1, v2

1, v
2, v3

2, v
3, v1

3

) = M
(
v1

2, v
2, v2

3, v
3, v3

1, v
1
)
. (2.14)

The latter together with the three lattice equations (2.8) determine all dCKP maps by virtue
of the relations (2.7) and the linear system (2.5). A priori, it is not evident that the constraint
(2.14) is compatible with the well-determined system (2.8). However, in [22], it has been
shown that the system (2.8), (2.14) is equivalent to the integrable dCKP equation. The latter
encapsulates a discrete version of the classical ‘symmetric’ Darboux system [9, 21, 23]. In
the following, it is shown how the compatibility of the system (2.8), (2.14) may be revealed
in a purely geometric manner by determining a well-posed Cauchy problem. Moreover,
importantly, it is demonstrated how a Bäcklund transformation for dCKP lattices may be
constructed by employing an analogous procedure.

3. A Cauchy problem for dCKP lattices

This section is concerned with the determination of a well-posed Cauchy problem for dCKP
maps v : E → R

3. To this end, it is convenient to visualize the construction of dCKP lattices
by filling the cubic lattice Z

3 with edges. Thus, whenever the value of v on some edge e
is known then this edge is inserted in the cubic lattice. We begin by arbitrarily prescribing
the map v on the coordinate axes (ni = 0, nk = 0) as shown in figure 6 and consider the
elementary cube which is attached to the origin (0, 0, 0). Here, without loss of generality, we
confine ourselves to the construction of dCKP maps which are defined on the first octant of
Z

3. The images of the three coordinate edges as indicated by black vertices in figure 6 are the
points of intersection of three lines. We now choose a conic which twice intersects each line.
The six points of intersection (grey vertices) give rise to another three lines which intersect
pairwise (white vertices). Accordingly, by construction, the collinearity and conic conditions
are satisfied on the elementary cube.

We proceed by considering an elementary cube which is adjacent to the elementary cube
discussed above. The map v is known on a coordinate edge and the four edges of the interface
between the two cubes. In figure 7, this fact is indicated by five black vertices, three of which
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Figure 7. The construction of Cauchy data: v is known on the ‘central’ elementary cube.

Figure 8. The construction of Cauchy data: v is known on three intersecting cylinders.

form a triangle. If we choose a conic which passes through the other two black vertices on
the line corresponding to the interface then we obtain four points of intersection with the
remaining two lines (grey vertices). Once again, the picture is completed by drawing three
additional lines and determining their points of intersection (white vertices). Iteration of this
procedure leads to maps v for which all collinearity and conic conditions are satisfied on three
intersecting ‘cylinders’, that is, on the unmarked cubes in figure 8.

The next step in the procedure is to satisfy the collinearity and conic conditions on an
elementary cube which has two faces in common with the above-mentioned cylinders. This
situation is illustrated in figure 8. Therein, the two faces correspond to seven black vertices
lying on two lines. The two grey vertices on the third line are the points of intersection with
a conic which passes through the appropriate four black vertices. As usual, the white vertices
are uniquely determined by the remaining three lines. Iteration of this procedure leads to maps
v which obey the collinearity and conic conditions on all elementary cubes attached to the
three coordinate planes ni = 0 as depicted in figure 9. We denote the corresponding set of
edges by

E
0 = {ei (ni = 0),ei (nk = 0),ei (nk = 1), i �= k}. (3.1)

A well-posed Cauchy problem is now formulated as follows.

Theorem 1. A discrete CKP map v : E → R
3 is uniquely determined by the Cauchy data

v(E0) subject to the collinearity and conic conditions on E
0.
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Figure 9. Cauchy data v(E0) for discrete CKP maps.

Figure 10. Eight elementary cubes and the associated octahedron.

Proof. In the preceding, it has been shown how one may construct Cauchy data v(E0) which
obey the collinearity and conic conditions on E

0. We now consider the elementary cube which
shares three faces with E

0 as depicted in figure 9. Thus, the map v is known on the nine edges
which belong to E

0. Their images are indicated by black vertices. The value of v on the three
remaining edges is determined by the points of intersection (white vertices) of the three lines
associated with the other three faces of the elementary cube. Accordingly, the collinearity
condition holds on the elementary cube. It is evident that iterative application of this procedure
leads to a unique discrete Darboux map. Thus, if we consider a cube which consists of eight
adjacent elementary cubes as depicted in figure 10 then what we need to demonstrate is that
if the conic condition is satisfied on seven elementary cubes then it automatically holds on the
eighth cube.

To this end, we focus on the 12 faces which are shared by pairs of elementary cubes.
These faces meet at six edges which are indicated by black vertices in figure 10. The four
faces linked to any of these edges are mapped to four lines which meet at the image of the
common edge. Accordingly, the 6 edges and 12 faces are mapped to the vertices and edges,
respectively, of an octahedron as displayed in figure 10. Therein, the grey vertices on the edges
of the octahedron represent the images of the remaining 24 edges of the 12 faces. Thus, the
conic conditions associated with the eight elementary cubes coincide with the conic conditions
on the octahedron. As depicted in figure 11, an incidence theorem of projective geometry,
to be discussed below, guarantees that the eight conic conditions are dependent as required.
Consequently, the unique discrete Darboux map is indeed of dCKP type. �
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Figure 11. Conic conditions on an octahedron: if seven conic conditions are satisfied then the
eighth conic condition automatically holds (bold ellipse).

3.1. A theorem for conics on triangulated surfaces. The origin of integrability

The proof of the above theorem has been based on the fact that the eight conic conditions on
an octahedron are not independent. The latter is a particular case of an incidence theorem of
projective geometry (cf [19]) which may be formulated as follows.

Theorem 2. Consider a closed and oriented triangulated surface with two distinct points
on each (extended) edge and let N denote the number of triangles. If the conic condition is
satisfied on N − 1 triangles then the conic condition also holds on the Nth triangle.

Proof. Consider an oriented triangulated surface with a consistent orientation of the triangles,
that is, the two orientations of any edge induced by the two adjacent triangles are opposite.
Accordingly, a ‘Carnot’ product Cn

6 of the type (2.11) may be associated with each triangle
�n. Since every edge makes a contribution to the numerator of one of these products and to
the denominator of another product, one obtains the identity

N∏

n=1

Cn
6 = 1 (3.2)

provided that the triangulated surface is closed. Hence, if the conic condition is satisfied on
N − 1 triangles, that is Cn

6 = 1 for n = 1, . . . , N − 1, then CN
6 = 1 so that the conic condition

holds everywhere. �

It has been demonstrated that the above incidence theorem lies at the heart of the Cauchy
problem for dCKP lattices. In the next section, it is shown that this theorem also guarantees the
existence of a Bäcklund transformation which, in turn, renders dCKP lattices integrable. The
connection between discrete integrable systems and ‘incidence theorems’ has been studied in
great detail in the context of ‘discrete differential geometry’. For instance, the integrability
of so-called curvature lattices, which constitute quadrilateral lattices the faces of which are
inscribed in circles, originates in Miquel’s classical theorem for six circles meeting at eight
vertices [2].

4. A Bäcklund transformation for dCKP lattices

The existence of a Bäcklund transformation for a system of differential or difference equations
may be regarded as a definition of integrability (see, e.g., [20]). In the case of the dCKP
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equation, it is indeed known [9, 21, 22] that one may generate an infinite number of solutions
by means of iterative application of an associated Bäcklund transformation to any given seed
solution of the dCKP equation. Here, we demonstrate that theorem 2 allows one to construct in
a purely geometric manner dCKP maps v̄ : E → R

3 from any given dCKP map v : E → R
3.

Thus, the incidence theorem is shown to encode the integrability of discrete CKP maps.
The main idea in the construction of a Bäcklund transformation for dCKP maps is to show

that any given dCKP map v : E → R
3 may be extended to a map defined on the edges of a Z

4

lattice which obeys the collinearity and conic conditions on all (two-dimensional) faces and
(three-dimensional) cubes, respectively. The extended map restricted to the edges of any of
the three-dimensional cubic sub-lattices which are ‘parallel’ to the three-dimensional lattice
on which the original dCKP map is defined then constitutes another dCKP map. This idea of
higher dimensional ‘consistency’ has recently been investigated in detail [3, 17]. It may be
used efficiently to classify particular classes of integrable discrete equations [1].

In the current context, it is sufficient to focus on maps v(4) which are defined on the set of
edges E

(4) of

G = Z
3 × {0, 1} ⊂ Z

4. (4.1)

If we denote by E and Ē the sets of edges of the two ‘horizontal’ cubic lattices Z
3 × {0} and

Z
3 × {1} respectively then, using the decomposition

E
(4) = E ∪ E

′ ∪ Ē, (4.2)

any map

v(4) : E
(4) → R

3 (4.3)

may be split into the maps

v : E → R
3, v′ : E

′ → R
3, v̄ : Ē → R

3, (4.4)

where E
′ designates the set of ‘vertical’ edges which connect the cubic lattices Z

3 × {0} and
Z

3 × {1}. Thus, if the map v constitutes an arbitrary dCKP map and if it may be extended to a
map v(4) in such a way that all collinearity and conic conditions hold on E

(4) then v̄ represents
another dCKP map.

Once again, we may identify the maps v,v′ and v̄ with maps

vi : Z
3 → R

3, v4 : Z
3 → R

3, v̄i : Z
3 → R

3 (4.5)

respectively, where i = 1, 2, 3. For notational convenience, we set (v1,v2,v3) =
(a, b, c),v4 = d and (v̄1, v̄2, v̄3) = (ā, b̄, c̄) and label the edges of G by their images under
v(4). Thus, if we denote the ‘horizontal’ elementary cubes in the cubic lattice Z

3 × {0} and
their ‘parallel’ counterparts in Z

3 ×{1} by H and H̄, respectively, and the ‘vertical’ elementary
cubes (which link the horizontal cubes) by V1, V2, V3 then the edges of the elementary cubes
carry the labels

H : {a,a2,a3,a23, b, b1, b3, b13, c, c1, c2, c12}
H̄ : {ā, ā2, ā3, ā23, b̄, b̄1, b̄3, b̄13, c̄, c̄1, c̄2, c̄12}
V1 : {b, b3, b̄, b̄3, c, c2, c̄, c̄2,d,d2,d3,d23}
V2 : {a,a3, ā, ā3, c, c1, c̄, c̄1,d,d1,d3,d13}
V3 : {a,a2, ā, ā2, b, b1, b̄, b̄1,d,d1,d2,d12}.

(4.6)

As usual, subscripts i denote elementary shifts along the coordinate direction ni . Accordingly,
any hypercube H(4) ⊂ G is composed of two horizontal cubes H, H̄ and six vertical cubes
Vi , Vi

i , i = 1, 2, 3, as illustrated in figure 12.
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Figure 12. The labelling of a hypercube H(4) ⊂ G.

(a) (b) (c)

Figure 13. The collinearity and conic conditions are satisfied on the horizontal cube H and on (a)
one, (b) two and (c) three vertical cube(s).

4.1. A hypercube theorem

Here, we focus on a single hypercube H(4) of the lattice G and demonstrate how the collinearity
and conic conditions may be consistently imposed on the eight constituent elementary cubes.
In view of the construction of a Bäcklund transformation, we begin with the assumption
that the collinearity and conic conditions hold on the horizontal cube H. This is indicated
by solid edges in figure 12. If we arbitrarily prescribe a point d which does not lie on the
plane associated with the cube H then the four collinear points a,a3, c, c1 and d span a
plane associated with the vertical cube V2. This situation has been encountered earlier in
the construction of the Cauchy problem for dCKP maps and, accordingly, the right-hand side
of figure 7 applies. Thus, specification of a suitable conic which passes through the points
a3 and c1 gives rise to the points of intersection ā,d1 and c̄,d3 with the lines (a,d) and
(c,d), respectively. The remaining points ā3, c̄1 and d13 are then uniquely determined and
the collinearity and conic conditions hold on V2 as indicated by solid edges in figure 13(a).

By construction, the two sets of collinear points a,a2, b, b1 and a, ā,d,d1 span a plane
which is associated with the vertical cube V3. This situation is now represented by the
right-hand side of figure 8. Thus, a suitably chosen conic which passes through the points
ā,a2, b1,d1 defines the points b̄ and d2 which, in turn, may be used to construct the points
ā2, b̄1 and d12. Thus, the collinearity and conic conditions are satisfied on V3 (cf figure 13(b)).

Finally, the plane associated with the vertical cube V1 is spanned by the three sets of
collinear points b, b̄,d,d2, b, b3, c, c2 and c, c̄,d,d3 which uniquely determine the remaining
points b̄3, c̄2, and d23 as illustrated by the right-hand side of figure 9. Thus, the collinearity
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Figure 14. Four cubes and the associated tetrahedron.

conditions hold on V1 (cf figure 13(c)). Remarkably, the associated conic condition is also
satisfied due to the following corollary of theorem 2.

Corollary 1. Consider four adjacent cubes which share a vertex of a hypercube and on which
the collinearity conditions are satisfied. If the conic condition holds on three cubes then it
automatically holds on the remaining cube.

Proof. By assumption, the four cubes are linked by four edges (black vertices) which meet at
the (white) vertex of the hypercube as illustrated in figure 14. Since each edge is shared by
two cubes, the four edges and four cubes are mapped to the vertices and faces, respectively,
of a tetrahedron. Moreover, the edges of the hypercube which are marked by grey vertices are
mapped to the edges of the tetrahedron. Accordingly, the conic conditions associated with the
four cubes coincide with the conic conditions on the tetrahedron. Application of theorem 2
then concludes the proof. �

The preceding analysis now forms the basis of the following hypercube theorem which is
central to the construction of a Bäcklund transformation for dCKP maps.

Theorem 3. Consider maps v(4) : H(4) → R
3 defined on (the edges of) a single hypercube

H(4). If the collinearity and conic conditions are satisfied on three or four cubes which share
a vertex of the hypercube then there exists a unique map v(4) for which the collinearity and
conic conditions hold everywhere on H(4).

Proof. Let v(4) be initially defined on three cubes which share a vertex of the hypercube H(4).
The latter also constitutes a vertex of a fourth adjacent cube. By assumption, the collinearity
and conic conditions are satisfied on the first three cubes. As demonstrated earlier, there
exists a unique extension of the map v(4) which obeys the collinearity condition on the fourth
cube. Moreover, corollary 1 implies that the conic condition also holds on the fourth cube.
Accordingly, in the following, we may assume that the collinearity and conic conditions are
satisfied on all four cubes which, for convenience, are taken to be H and V1, V2, V3. This
means that the collinearity condition is satisfied on 18 of the 24 faces of the hypercube.

Even though the images of the horizontal cube H̄ and the vertical cubes V1
1, V2

2, V3
3 have

yet to be completely specified, their associated planes, which we denote by P̄ and P1, P2, P3,
respectively, are determined by the sets of collinear points

P̄ : {ā, ā2, ā3, b̄, b̄1, b̄3, c̄, c̄1, c̄2}
P1 : {b1, b13, b̄1, c1, c12, c̄1,d1,d12,d13}
P2 : {a2,a23, ā2, c, c12, c̄2,d2,d12,d23}
P3 : {a3,a23, ā3, b3, b13, b̄3,d3,d13,d23}.

(4.7)
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Figure 15. Generation of Cauchy data for the Bäcklund transformation.

Thus, under the assumption of genericity, we may define the points ā23, b̄13, c̄12 and d123 as
the points of intersection of triplets of appropriate planes, namely,

ā23 = P2 ∩ P3 ∩ P̄

b̄13 = P1 ∩ P3 ∩ P̄

c̄12 = P1 ∩ P2 ∩ P̄

d123 = P1 ∩ P2 ∩ P3.

(4.8)

It is readily seen that the collinearity condition is satisfied on the remaining six faces of the
hypercube. Indeed, for instance, the points b13, b̄13,d13,d123 are collinear since they lie on
both planes P1 and P3 by virtue of (4.7) and (4.8). Iterative application of corollary 1 then
reveals that the conic condition is satisfied on all eight cubes of H(4). This completes the
proof. �

It is remarked that the proof of theorem 3 shows that the data needed to determine v(4)

on a Bäcklund hypercube H(4) are precisely the vertices on the tetrahedron in figure 14. This
observation holds with or without the conic conditions, but it is theorem 2 that guarantees that
these data can be chosen to satisfy the conic conditions.

4.2. A Bäcklund transformation

We are now in a position to construct a Bäcklund transformation for dCKP maps. Thus, let
v : E → R

3 be any given dCKP map with the set E being the ‘horizontal’ sub-lattice in the
decomposition (4.2) of E

(4). An extension of the map v to a map v(4) : E
(4) → R

3 which
obeys all collinearity and conic conditions is obtained as follows. As demonstrated in the
preceding subsection, prescription of the map v(4) on, for example, the vertical cubes V2 and
V3 of a hypercube H(4) leads to a unique map of dCKP type defined on all remaining cubes of
H(4). Moreover, since, for instance, the vertical cube V2

2 is part of both H(4) and the adjacent
hypercube H(4)

2 , the collinearity and conic conditions are satisfied on the horizontal cube H2

and the vertical cube V2
2 of the hypercube H(4)

2 as illustrated in figure 15. Accordingly, we are
in the situation of figure 13(a) and may extend the map v(4) in such a way that the collinearity
and conic conditions are satisfied on the vertical cube V3

2. Once again, the hypercube theorem
guarantees that the collinearity and conic conditions may be uniquely satisfied on all remaining
cubes of H(4)

2 . Hence, iterative application of the above procedure leads to a (non-unique)
extension of the map v to a map v(4) of dCKP type which is defined on E and the edges of the
set of three intersecting ‘cylinders’ of hypercubes

Ê = {edges of H(4)(ni = 0, nk = 0), i �= k}. (4.9)

Given any particular extension v(4), we may now construct uniquely another dCKP map v̄
which we term a Bäcklund transform of the seed dCKP map v. The set v(4)(Ê) may be
regarded as Cauchy data for the Bäcklund transformation which maps v to v̄. Here, it is noted
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(a) (b)

Figure 16. Construction of the unique map v(4).

that the Cauchy data have been generated by imposing the collinearity and conic conditions on
a subset of vertical cubes only. However, by virtue of the hypercube theorem, these conditions
hold everywhere on Ê.

Theorem 4. Let v : E → R
3 be a discrete CKP map and let ṽ : E ∪ Ê → R

3 be an extension
of v which obeys the collinearity and conic conditions on Ê. Then, there exists a unique
extension v(4) : E

(4) → R
3 of ṽ such that all collinearity and conic conditions are satisfied.

In particular, the restriction v̄ : Ē → R
3 constitutes another discrete CKP map.

Proof. By assumption, the map ṽ obeys all collinearity and conic conditions on the hypercubes
H(4)(ni = 0, nk = 0) for i �= k. This set of hypercubes includes the hypercube H(4) attached
to the origin of the coordinate system and its two neighbours H(4)

2 and H(4)
3 . Accordingly, the

collinearity and conic conditions are satisfied on the vertical cubes V2
23 and V3

23 which are part
of the hypercube H(4)

23 (cf figure 16(a)). Since, by assumption, these conditions also hold on the
horizontal cube H23, the map ṽ may be extended uniquely to the hypercube H(4)

23 by virtue of
the hypercube theorem. Iterative application of this procedure leads to a dCKP-type extension
v(4) of the map ṽ which is defined on E and the edges of the hypercubes H(4)(ni = 0).

We now consider the hypercube H(4) and its six neighbours H(4)
1 , H(4)

2 , H(4)
3 and

H(4)
12 , H(4)

23 , H(4)
13 as illustrated in figure 16(b). The preceding analysis implies that the collinearity

and conic conditions hold on the vertical cubes V1
123, V2

123, V3
123 and the horizontal cube H123

of the hypercube H(4)
123. Once again, the hypercube theorem guarantees that the collinearity

and conic conditions may be satisfied uniquely on the cubes of H123. Iteration then produces a
unique extension v(4) of the map ṽ which is such that the collinearity and conic conditions hold
on E

(4). In particular, the map v(4) restricted to the three-dimensional horizontal sub-lattice Ē

constitutes a dCKP map. �

5. Conclusions

We have demonstrated that Pascal’s classical theorem for hexagons inscribed in conics allows
one to define in a compact manner particular discrete Darboux maps which are governed
algebraically by one of the three discrete ‘master equations’ in soliton theory, namely the
dCKP equation. A theorem for conics on closed and oriented triangulated surfaces has been
applied to octahedra to construct a well-posed Cauchy problem for dCKP maps. Moreover, the
same theorem applied to tetrahedra has led to the construction of a Bäcklund transformation
for dCKP maps. Thus, the integrability of dCKP maps and its underlying nonlinear soliton
equation has been shown to be encoded entirely in yet another fundamental incidence theorem
of projective geometry.
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